Thèse : A virtual testing approach for the validation of the dynamic behavior of metallic materials H/F

Détail de l'offre

Informations générales

Entité de rattachement

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité
  

Référence

2023-25619  

Description de l'unité

Le Département de Modélisation des Systèmes et Structures (DM2S) réalise de la R&D théorique et expérimentale ainsi que des études sur les systèmes énergétiques en mécanique des structures, thermohydraulique et mécanique des fluides, physique des réacteurs nucléaires et neutronique, ainsi que sur les réseaux d'énergie. Il s'appuie pour cela sur des essais et des plateformes logicielles, développées en interne ou en partenariat. Le DM2S fait partie de l'Institut des Sciences Appliquées et de la Simulation pour les énergies bas carbone (ISAS) de la Direction des Énergies (DES) implanté au CEA/Paris-Saclay. La DES est triple certifiée selon les référentiels ISO 9001:2015, ISO 14001:2015 et ISO 45001:2018.

Description du poste

Domaine

Mécanique et thermique

Contrat

Stage

Intitulé de l'offre

Thèse : A virtual testing approach for the validation of the dynamic behavior of metallic materials H/F

Sujet de stage

The aim of this thesis is to propose a computational-based methodology to select tests configurations to evaluate the relevance of a given constitutive model. The first step is to develop a high-fidelity digital twin of the dynamic tests. This digital twin has to be designed to take into account the features of the selected full-field measurement technique and to provide data as if obtained experimentally. The later can then be used to optimize the test configuration by minimizing a cost function, whose definition is an essential step of this work. Since this minimization may require the simulation of several specimen geometries, surrogate models are to be used (kringing, AI, ...).


The proposed methodology will be applied to build a test campaign on a drop tower for the characterization of metallic materials undergoing dynamic loadings. In particular, it is expected to gain knowledge on stainless steels behaviour characterization, as it is widely used in the nuclear industry.

Durée du contrat (en mois)

36

Description de l'offre

Dynamic behaviour characterization of materials is still the cornerstone of many research programs in mechanics. It leads to the development of non-linear constitutive models (e.g., elasto-viscoplasticity) involving several parameters that need to be identified for each considered material. Usually, these models are characterized using simply the homogeneous response of uniaxial specimens submitted to different loading rates. Since the identified models are applied to predict the behavior of complex structures undergoing various stress states, this standard approach eventually leads to unsatisfactory predictions. To achieve a satisfactory level of prediction for a complex full-scale structure to in service loadings, a building block approach can be implemented.

 


Two options can be considered for a building block approach. The first option is to perform systematically a full characterization of the material behaviour mechanisms (e.g., anisotropy, strain-rate effects, . . . ) onto material samples submitted to a variety of loading conditions by studying their homogeneous response. With this option, the material database is necessarily large enough to expect a correct prediction of the mechanical behavior of complex components. However, this type of systematic extensive characterization is expensive and might be unnecessary for material that exhibit a rather simple mechanical behaviour.

 


Another option for the building block approach - perhaps more frugal - is to perform only a minimal characterization using material samples submitted to uniaxial loading with homogeneous responses and to move on to small-scale component tests based on constitutive models errors. From the observed discrepancy, it is possible to define additional tests on increasingly complex and
large components to update the database iteratively until the constitutive model can be validated. The latter approach is even more relevant for characterization under dynamic loading conditions for which experimental devices are more restricted to uniaxial loading : in this case, the validation of material models based on heterogeneous states (e.g., in terms of stress , strain-rates, . . . ) is more appropriate. In order to study heterogeneous fields, or more generally to analyze tests/structures, it is interesting to use full-field measurement techniques. Indeed, owing to recent spectacular improvements in optics, it is now possible to extract full-field kinematic maps (displacement, acceleration, strain) that are accurate enough using high-speed cameras, even at high temporal resolution (several thousands of images). Finally, for this second approach chosen for this work, the main challenge is to design informative complex components tests (including the specimen geometry as well as the metrological toolchain).

 

 

 

Profil du candidat

Applicant profile : MSc in Mechanical/Materials Engineering, Computer Science, Numerical Analysis or equivalent


Appreciated skills : Non-linear/Computational Mechanics, good proficiency with Python or DIC framework

Localisation du poste

Site

Saclay

Localisation du poste

France, Ile-de-France, Essonne (91)

Ville

SACLAY

Critères candidat

Diplôme préparé

Bac+8 - Doctorat scientifique

Demandeur

Disponibilité du poste

01/10/2023